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SUMMARY 

A study i s  made f o r  the  development and computations o f  t h e  separa t ing  

and r e a t t a c i n g  shear flows. 

p r e d i c t  t he  third-moments o f  t u rbu len t  v e l o c i t y  which i s  respons ib le  f o r  t he  

d i f f u s i o n  t ranspor t  o f  the  Reynolds stresses. The present  computations show 

t h a t  t he  third-moments obtained by employing the  low-Reynolds number model o f  

t r a n s p o r t  equat ions improve the  p r e d i c t i o n  o f  t he  third-moments. 

The h i g h l i g h t  o f  t he  s tudy i s  an at tempt  t o  

The modeling f o r  sca ia r  var iab les a re  a l so  performed f o r  t he  heat t r a n s f e r  

computations. 

g iven i n  t h e  l a s t  NASA CR, t he  study has been extended f u r t h e r  t o  t h e  modeling 

o f  <e >, <u.e > and te  ( d i s s i p a t i o n  r a t e  f o r  <e >). 

shown i n  t h i s  repo r t .  

Since t h e  t ranspor t  equations f o r  <uiO> and <u.u.e> have been 
1 J  

2 2 2 The fo rmula t ions  a r e  
1 
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INTRODUCTION 

Separation and recirculation of flow is encountered in a vast array of 

engineering applications. This phenomenon of flow separation and 

recirculation associates itself with higher turbulence levels which not only 

render the flow greater analytical complexity but also would result in highly 

augmenting its heat transfer and momentum aspects. Thus, demand for 

mathematical models that can predict any complex turbulent flows is increasing 

as well as experimental measurements for better understanding of such complex 

flows. 

turbulence effects are quite significant in separating shear flows and 

consequently occurring reattaching and recirculating flows beyond a step. 

It has been observed by many researchers [1,23 that non-isotropic 

Moreover, turbulent third-moments and corresponding triple scalar-velocity 

products are equally predominant in the separated shear flow field interacting 

with turbulent boundary layers. 

The most noticeable features of the experimental observations reported by 

Chandrsuda and Bradshaw [l] and later by Driver and Seegmiller [3]  are that 

the shapes of the third-order moments o f  turbulence fluctuating velocity 

change rapidly along the separated shear layer due to distortion of the large 

eddies by effectively irrotational mechanisms. The implication of these 

observations in separating and reattaching shear layer is that algebraic 

relations between the third-order moments and the Reynolds stresses are likely 

to be inadequate for strongly perturbed flows, making it necessary to use 

transport equations for the third-moments. 

This study is conducted to develop new models o f  turbulence with the 

third-order closure in order to predict the turbulent flow through a duct with 

a relatively complex geometry. As a basic study of modeling, a backward-facing 

step is chosen to carry out computations. The advantage of having such a flow 
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geometry i s  t h a t  a number o f  experimental data a re  a v a i l a b l e  i n  the  l i t e r a t u r e  

f o r  comparison w i t h  present r e s u l t s .  Computations o f  the  momentum and 

temperature f i e l d s  i n  the  f l o w  domain being considered e n t a i l  t he  s o l u t i o n  o f  

t he  time-averaged t ranspor t  equations con ta in ing  t h e  second-order t u r b u l e n t  

f l u c t u a t i n g  products. 

d i f f u s i v e  t ranspor t  of t he  second-order products,  a t t a i n  g rea te r  s i g n i f i c a n c e  

i n  separat ing and rea t tach ing  f lows. The f o l l o w i n g  chapter descr ibes the  

moiieiiriy o f  these t ranspor t  equations. 

The th i rd -order  products,  which are  respons ib le  f o r  t h e  

MATHEMATICAL MODELS FOR THIRD-MOMENTS 

The t ranspor t  equations f o r  t he  Reynolds stresses can be g iven as 

where Pij and I $ ~ ~ ,  respec t ive ly ,  represent t h e  product ion and t h e  

pressure-s t ra in  ra tes.  In t h e  parenthesis o f  t h e  above equat ions,  t h e  upper 

case l e t t e r  U and t h e  lower case l e t t e r  u represent  the  Reynolds averaged and 

t h e  instantaneous values o f  the ve loc i t y ,  respec t ive ly .  The symbol < > 

denotes t h a t  t he  argument i n s i d e  t h i s  b racket  i s  ensemble-averaged. 

p ressure-s t ra in  c o r r e l a t i o n  +ij i s  evaluated by us ing the  model o f  Launder 

e t  a l .  [4 ] .  

The 

The d i f f u s i o n  rate,  Dij, contains t h e  terms g iven as fo l lows:  

< u p >  < u . p >  
d +L a [ < u u u > +  - = - -  

'i j axk i j k  p j k  p * i k  

auk auk -> + <u ->)I 
a<u. u .> 1 J  

j 
- v (  axk + <"j axi i ax 
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where p ,  p ,  and v represent,  respectively, the t u r b u l e n t  f luc tua t ing  

pressure,  the f l u i d  density and the f l u i d  kinematic v i scos i ty .  The symbol d 

denotes the Kronecker d e l t a .  

s t r e s s e s  i s  governed by the gradien t  of the third-moments <uiujuk>, 

becomes necessary t o  evaluate the third-moments exactly.  T h u s ,  the  

t ransport  equations f o r  such third-moments a r e  developed and shown as follows. 

Since the diffusion r a t e  of the Reynolds 

i t  

The t h i r d  moments, < u i u j u k > ,  can be evaluated by formulating 
*L - ~ i i e  i r t ransport  equations as 

au i  au 
( U Q  <u.u.u >) = - ( < u . u . u  > - + < U U U > - -  + <u u . u  > 3) a - 

1 J k  1 J Q axQ j k e ax, k i e axQ 

- 4 -  
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a auk auk 
+ <"iUj axa axe axk - [ v  (- + -)I> 

- a [ v  (- aui + -)I> auk 
+ <'jUk axa ax, axi 

au auk 

j 
+ <'kui axa auk ax 

a - [ v  (1 + -)I> 

In the above equations, terms I and 

generation rates due to mean strain and 

I1 represent, respectively, the 

he Reynolds s,resses. Term I11 is 

responsible for the generation rate if the Gaussian approximation is applied; 

this can be merged into term 11. Term IV, which is the pressure-stress 

correlation, plays a significant role in redistributing the tensor and in 

diffusing due to fluctuating pressure. 

molecular diffusion rate and the dissipation rate. 

Term V can be divided into the 

In order to account for the viscous effects that are predominant near the 

wall, a low-Reynolds number modification needs to be incorporated in the 

transport equations of  the thi rd-moments. 

The theory behind this low-Reynolds number model is based upon the fact 

that the scale of the eddies created in the shear layer changes rapidly as the 

flow approaches the solid wall by enhancing the turbulence energy dissipation 

rate. Thus, the model should be devised to control the size of the eddy. 

This was done by evaluating the correct expression for the dissipation rate, 

t, by formulating it in each layer near the wall such as the viscous 

sublayer, the buffer layer, and the fully turbulent core flow. This 

controller is incorporated in the pressure-stress term (Term I V  in Eq. (3)) in 

- 5 -  
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order t o  adjust  the time of  r a t e  change of the third-moments of turbulence 

velocity as  follows: 

eijk E Pressure-stress term 

t = c  - < u u u >  
y k  i j k  

and 

e . .  = near-wall correction f o r  pressure-stress term 
1 J k . W  - 

ak1 l2  2 1 k3/2 
= C - (u u u > (max [ C  - 

9 2v (- 1 31  YW CllY aY y k  i j k  

( 4 )  

where k and y represent the turbulence energy and the dis tance from the wall ,  

respectively.  

The d i ss ipa t ion  r a t e  i s  given as: 

= Dissipation due t o  viscous effect  i j k  - & 

1 /2 = C c k  
CY 

and 

D i j k  E Diffusion due  t o  viscous effect  
-. 

a a 
( v  ax < u . u . u  >) - - -  

ax a a 1 J k  

The values f o r  the  constants a r e  l i s ted  i n  Table 1.  
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TABLE 1. Recomnended values f o r  t he  constants 

C ce Y cYW C Y  
C 

1 .o 2.55 3.0 ( low-Re no. model) 8.0 0.2 

5.8 (high-Re no. model) 
~~ 

The models considered i n  t h i s  study are def ined as fo l lows:  

High-Reynolds number model 

a 
Pi jk .1  + Pj jk .2  t e j j k  + D e .  i J k  

- (Ue <u.u.u >) = ax, i J k  

where 

E produc t ion  due t o  mean s t ra ins  pi jk.1 

aui au 
= -c (<u u u > - + < u u u > -  + <u u . u  > A) g i j axe j k a ax, k i axp 

5 Product ion due t o  ' i j k .2  

grad i en t s 

Low-Reynolds number model 

Reynolds stresses i n t e r a c t i n g  w i t h  t h e i r  

- <u u u >) = ' i jk .1  + ' i jk .2 + ' i j k  + 'ijk,w ax, i j k 
a 

+ &  i j k  + D i j k  

- 7 -  
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SOLUTION PROCEDURE 

Figure 1 shows the solution domain o f  the flow field. The inlet section 

is located approximately two step heights upstream from the step and the 

outlet section about sixty step heights downstream therefrom. 

grid tests it was discerned that the system with 62 x 62 node points gives 

results independent of the grid. 

chapter. 

the grid expanding linearly at the rate of 2% in x-direction and at 3% in 

y-direction. Figure 2 shows the numerical grid used in computations ( 5 : l  

expansion in y-direction). 

After several 

More details are given in the following 

The computations were performed using the 62 x 62 variable grid with 

Computations of the transport equations described in the preceding 

section are achieved by using the finite volume method [ 5 ] .  The iterative 

the relative residual 

computations 

sources fall 

procedure is terminated when the maximum value of 

sources of U, V ,  and mass balance falls below 1%. 

of the triple products are continued until the re 

below 3 x 

However, the 

ative residua 

RESULTS AND DISCUSSION 

Figures 3 and 4 show the computed skin friction coefficient, C f ,  and 

pressure coefficient, C respectively, along the bottom wall. The results 

are also compared with the experimental data of Driver and Seegmiller [3]. 
P' 

These coefficients are defined as follows: 

W T - 
cf - 1 2 T UIN 

- - 'ref 
cp - 1 2 

'IN 
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where lW and P represent the wall shear s t r e s s  and the Reynolds averaged 

pressure,  respectively.  The subscript  IN stands f o r  inlet  and ref indicates  

the  reference location which i s  two step heights upstream of the s tep.  

Computations have been performed w i t h  several d i f f e r e n t  g r i d  systems 

ranging from 32 x 32 t o  62 x 62. 

independent s t a t u s  i s  at ta ined w i t h  the gr id  system f i n e r  than 52 x 52. 

t h i s  reason the g r i d  w i t h  62 x 62 has been used i n  the rest of the  

computations. 

reasonably well except the discrepancy f o r  the pressure c o e f f i c i e n t  beyond the  

reattachment point. 

I t  i s  shown i n  these figures t h a t  f a i r  g r i d  

For 

The  agreement between the computation and the measured data is  

Figure 5 shows the mean velocity prof i les  a t  two downstream locat ions.  

The computed prof i les  a re  compared w i t h  the  experimental data taken by 

Chandrsuda and Bradshaw 1 1 3 .  

d i f f e r e n t  methods: 

Agreement between the computation and the  two s e t s  of t h e  experiment i s  qu i te  

reasonable. I t  i s  a l s o  noticed t h a t  the trend of the computed r e s u l t s  accords 

more w i t h  the  hot-wire measurements than w i t h  t h e  pressure-probe data.  

The measured data were obtained by us ing  two 

one by pressure-probe and the  other  by hot-wire. 

Figure 6 shows the prof i les  o f  the Reynolds s t r e s s e s  a t  several locations 

downstream of the  s tep.  

s t r e s s e s  (<uu> and <vv>) and the shear s t r e s s  (<UP) between computed results 

and the measurement is  f a i r l y  well w i t h i n  t h e  e r r o r  of 10% beyond the 

reattachment posit ion; however, the computed <uu> and <uv> p r o f i l e s  w i t h i n  the  

rec i rcu la t ing  region do not agree w i t h  t h e  measured leve ls  a t  the peak 

posi t ions.  

r e s u l t s  coincide toward f a r  downstream. 

As seen i n  this f igure  agreement of the  normal 

T h i s  disagreement seems t o  be l a r g e r  near t h e  s tep ,  b u t  both 

Probably, the generation r a t e  and the  pressure-strain correlat ion 

associated w i t h  the  secondary mean s t ra in  ra tes  (aV/ax)  f o r  the  t ranspor t  

- 9 -  



equation of <uv> is not as high as it should be in this near step region, 

whereas the actual shear stress level might be enhanced due to the cornering 

flow at the bottom o f  the step. 

Figure 7 represents the comparison of the third-moments of turbulence 

fluctuating velocity between the high-Reynolds number and low-Reynolds number 

models. In this figure large changes are observed between these two models. 

The high-Reynolds number model gives higher levels in the near-wall region 

than the low-Reynolds number model. This fact indicates that the terms 

represented by Eqs. (5) and (6) play a significant role in the determination 

of the third-moments. In the near-wall region, the eddies created through the 

separated shear layer tend to become smaller, and as a result, the rate of 

turbulence energy dissipation increases rapidly. This is why the effect o f  

t added in the model promotes the dissipation action of <uiujuk> in 

the near-wall region giving lower levels of the third-moments toward the 

solid wall. Agreement of the computations by the low-Reynolds number model, 

thus, is considerably improved. 

Figure 8 represents the comparisons of the low-Reynolds number model with 

other algebraic models developed by several researchers: Hanjalic and 

Launder [6] ,  Cormack et al. [7], Daly and Harlow [8], and Shir [9 ] .  As shown 

in this figure, the results obtained by the transport equations for the 

third-moments give generally better agreement with the experimental data than 

the results obtained by using the corresponding algebraic models. However, it 

is also noticed that the levels of the third-moments predicted by using the 

transport equations are very high across the separated shear layer above the 

recirculating flow, although they agree reasonably well with the experimental 

data at the location near the reattachment and the downstream region. 

- 10 - 



Another advantage of  using the transport equations is that a low- 

Reynolds number correlation can be incorporated in order to account for the 

viscous effect near the wall as well as the convection effect. Thus, the 

prediction by using the transport equations is closer to the measured data 

near the wall throughout the flow region. 

1. 

2 .  

3 .  

The above discussion can be summarized as follows: 

The Reynolds-stress model developed in this study is shown to predict the 

separating and reattaching shear flows properly. 

The third-order turbulence velocity fluctuating tensor denotes rapid 

changes in the reattaching and recirculating flow regions. This behavior 

can be predicted by developing the transport equations for the 

third-moments of turbulence velocity. 

It was shown that by promoting the dissipation effect of the third- 

moments in the near-wall region the prediction of the third-moments were 

considerably improved. This low-Reynolds number model for the 

third-moments provides more universal results than do the algebraic 

models. 

Figures 9-11 show variations o f  the computed Reynolds stresses. Figures 

12-15 show variations of the triple products of the velocity fluctuations. 

is clear that the sharp changes in the levels of the triple products are 

produced in the separating shear flow region which diminish toward downstream. 

It 

DEVELOPMENT OF TEMPERATURE FLUCTUATING EQUATIONS 

A new model has been under developing for the computation of heat 

transfer rates in a separating and recirculating flow. Since a transport 

equation approach is required for better prediction of such complex flows, 

temperature fluctuating variables with interaction with velocity fluctuating 



t ranspor t  a r e  correlated w i t h  defined hydrodynamic and Reynolds averaged 

veloci ty  f luctuat ions.  

In  the  l a s t  report [ l o ]  the formulations and the preliminary computed 

r e s u l t s  were shown f o r  the variables of < u i O >  and <u.u.e>. 

report  formulations of other variables such as 

In th i s  
1 3  

and 

2 R,, = <e >/2 

3 

ae ae , 
a x i a x i  te = a< 

J J  

a r e  presented where a and 8 denote, respectively, the thermal d i f f u s i v i t y  

and f luc tua t ing  component of temperature. 

d i ss ipa t ion  r a t e  of turbulence temperature energy leve l ,  corresponds t o  E .  

te ,  which represents t h e  

The t ransport  equation f o r  Ree was developed because i t  appears i n  

the  buoyant source term of the vertical  heat f l u x  equation o f  s t r a t i f i e d  

flows. 

developed i n  order t o  close the Ree equation. 

important because a f l u i d  element receives an u p t h r u s t  (buoyant e f f e c t )  

proportional t o  aeg i f  i t s  instantaneous temperature exceeds the average 

temperature a t  the horizontal plane by e. T h i s  w i l l  produce an extra  

enthalpy f l u x  proportional t o  aeg(T + e) which upon time averaging 

reduces t o  agRee and increases the overall l eve ls  of <ve> [ l l ] .  

For t h i s  reason the transport  equations f o r  te and Riee  were 

The  buoyant term is  

- 1 2  - 



Scalar  Double Product R,, 

Transport  equat ion f o r  Ree i s  given as: 

aReO [<Rjee> - a -3 a 
j 

ax 
- -  aT 

j 
ax - - <UjO> axj - 'e aRee 

'j ax-  
j 

Equat ion (17)  i s  explained as fo l lows:  

( i )  Rate o f  change o f  turbulence temperature energy l e v e l  

balances w i t h  

Product ion o f  turbulence temperatures energy by mean temperature 

grad ien t  

m i  nus 

Energy d i s s i p a t i o n  r a t e  of turbulence temperature by molecular  a c t i o n  

p lus  

D i f f u s i o n  t ranspor t  due t o  turbulence v e l o c i t y  f l u c t u a t i o n  

p l u s  

( i i )  

( i i i )  

( i v )  

( v )  D i f f u s i o n  t ranspor t  due t o  molecular a c t i o n  

The d i s s i p a t i o n  r a t e  f o r  t h e  double product  o f  t he  temperature 

f l u c t u a t i o n s ,  t e ,  i s  obtained i n  a s i m i l a r  manner as i s  done f o r  t. 

( i i )  ( i i i )  

ae ae 
ax. ax ax 

2a<--- ae auk ae > -2a<-->-- 
ax.  ax .  ax 

J J k  J k  j 

0 a t  

j e J  ax 
a2e > 2 - -  a [<t'u.> - a -I 

j 
ax - 2 <a ax. axk 

J 
( v i )  ( v i  i) ( v i i i )  

- 13 - 



where 

I 
t = = - - *  Unaveraged quantity 

a x .  ax * 
~j 

e 

Equation (18) is  interpreted a s  follows: 

( i )  Rate of change of te  

balances w i t h  

Generation due t o  mean temperature gradient ( i i )  

p l u s  

Secondary generation due t o  mean temperature gradient 

p l u s  

Generation due t o  mean vortex s t re tching action 

p l u s  

Generation due t o  turbulence f luctuat ions 

m i  n u s  

Destruction o f  to  due t o  f ine  sca le  turbulence in te rac t ions  

p l u s  

( i i i )  

( i v )  

( v )  

( v i )  

( v i i )  Diffusion r a t e  due t o  turbulence velocity 

p l u s  

Diffusion r a t e  due t o  molecular action. 

I t  i s  generally recognized that  the  contribution of terms ( i i ) ,  ( i i i )  

( v i i i )  

and ( i v )  i s  negligibly small i n  h i g h  turbulent flows. T h u s  these terms can be 

dropped. 

Terms ( v )  and ( v i )  a r e  treated i n  the  same manner as  C :  

( v )  + ( v i )  = [ C c e  Pe - CEO 1 - 
1 2 e Ree 

- 14  - 
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where 

aT Pe = - <uke> - 
axk 

Term ( v i i )  may be g iven as 

Thus Eq. (18) becomes 

i n  Eq. ( 1 7 )  i s  s t i l l  undetermined. This  i s  modeled c u r r e n t l y  as Rice 

2 - -  2 <u.u.e> - aT aRiee - < U . 6  > 
J 

u. - - 
j J a x j  i J ax 

(i) (ii) (ii 

aui 

j 
ax 

1 

- 

1 I ace2> - [2 <U.@ ax 
j 

+ <u.u.> - 
j 

1 J ax J 

- -  a 'ee 7 aRieel 
j 

ax ['D t j j e 

J J J J 
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Equation (23) may be explained as 
2 

( i )  Rate o f  change of  <uiO > 

is balanced with 

Generation due to mean temperature gradient ( i i )  

plus 

( i i i )  Generation due to mean vortex sketching 

plus 

(iv) Generation due to turbulence 

plus 

(v) Diffusion due to turbulence 

plus 

Diffusion due to thermal molecular action 

plus 

Diffusion due to momentum molecular action 

(vi) 

(vii) 

plus 

(viii) Pressure-scalar correlation 

minus 

(ix) Buoyancy effect. 

The pressure-scalar correlation is split into two terms as 

The buoyancy term is given as 

Thus, by neglecting molecular diffusion terms we can solve Eq.  (23) after 

determining coefficients appearing in diffusion (term (v)) and pressure-scalar 

correlation (Eq. ( 2 4 ) ) .  
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FIGURE CAPTIONS 

FIGURE 1. Solution domain--Backward-facing step geometry w i t h  the 
separating , rec 1 rculat i ng and tedevel opi ng regi ons . 

FIGURE 2. Numerical grid used in computations. 

FIGURE 3. Skin friction coefficient along the bottom wall downstream 
of the step. 

FIGURE 4. Pressure coefficient along the bottom wall. 

FIGURE 5. U-velocity profiles downstream of the step. 

F!GURE 5 .  Reyno?ds-stress profiies downstream of the step. 

FIGURE 7. Third-moment profiles downstream of the step: Comparlson 
of the low and high-Reynolds number models. 

FIGURE 8. Third-moment profiles downstream of the step: Comparison 
of the lowReynolds number model with algebraic models. 

FIGURE 9.  Variation of <u*> 

FIGURE IO. Variation o f  <v2> 

FIGURE 1 1 .  Variation of <uv> 

FIGURE 1 2 .  Variation of <u3> 

FIGURE 13. Vatlation o f  <u2v> 

FIGURE 14. Varfatlon o f  <w2> 

FIGURE IS. Variation of <v3> 
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FIGURE 1 .  Solution domain--Backward-facing step geometry with the 
separating, recirculating and redeveloping regions. 
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FIGURE 7. Third-moment profiles downstream o f  the step: Comparison 
of the low and high-Reynolds number models. 
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FIGURE IO. Variation o f  <v2> 



FIGURE 11 .  Variation of <uv> 
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